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Sato–Tate groups of elliptic curves

k a number field.

E/k an elliptic curve.

The Sato–Tate group ST(E ) is defined as:

I SU(2) if E does not have CM.

I U(1) =

{(
u 0
0 u

)
: u ∈ C, |u| = 1

}
if E has CM by M ⊆ k.

I NSU(2)(U(1)) if E has CM by M 6⊆ k .

Note that Tr : ST(E )→ [−2, 2]. Denote µ = Tr∗(µHaar).

SU(2) U(1) N(U(1))
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The Sato–Tate conjecture for elliptic curves

Let p be a prime of good reduction for E . The normalized Frobenius
trace satisfies

ap =
N(p) + 1−#E (Fp)√

N(p)
=

Tr(Frobp |V`(E ))√
N(p)

∈ [−2, 2] (for p - `)

Sato–Tate conjecture

The sequence {ap}p is equidistributed on [−2, 2] w.r.t µ.

If ST(E ) = U(1) or N(U(1)): Known in full generality
(Hecke, Deuring).

Known if ST(E ) = SU(2) and k is totally real.
(Barnet-Lamb, Geraghty, Harris, Shepherd-Barron, Taylor);

Known if ST(E ) = SU(2) and k is a CM field
(Allen,Calegary,Caraiani,Gee,Helm,LeHung,Newton,Scholze,Taylor,Thorne).
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Toward the Sato–Tate group: the `-adic image

Let A/k be an abelian variety of dimension g ≥ 1.

Consider the `-adic representation attached to A

%A,` : Gk → Autψ`
(V`(A)) ' GSp2g (Q`) .

Serre defines ST(A) in terms of G` = %A,`(Gk)Zar.

For g ≤ 3, Banaszak and Kedlaya describe ST(A) in terms of
endomorphisms.

By Faltings, there is a Gk -equivariant isomorphism

End(AQ)⊗Q` ' EndG0
`
(Q2g

` ) .

Therefore

G0
` ↪→ {γ ∈ GSp2g (Q`) | γαγ−1 = α for all α ∈ End(AQ)} .
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The twisted Lefschetz group

More accurately

G` ↪→
⋃
σ∈Gk

{γ ∈ GSp2g (Q`) | γαγ−1 = σ(α) for all α ∈ End(AQ)} .

For g = 4, Mumford has constructed A/k such that

End(AQ) ' Z and G` ( GSp2g (Q`) .

For g ≤ 3, one has

G` '
⋃
σ∈Gk

{γ ∈ GSp2g (Q`) | γαγ−1 = σ(α) for all α ∈ End(AQ)} .

Definition

The Twisted Lefschetz group is defined as

TL(A) =
⋃
σ∈Gk

{γ ∈ Sp2g /Q|γαγ−1 = σ(α) for all α ∈ End(AF )}.
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The Sato–Tate group when g ≤ 3

From now on, assume g ≤ 3.

Definition

ST(A) ⊆ USp(2g) is a maximal compact subgroup of TL(A)⊗Q C.

Note that

ST(A)/ST(A)0 ' TL(A)/TL(A)0 ' Gal(F/k) .

where F/k is the minimal extension such that End(AF ) ' End(AQ).
We call F the endomorphism field of A.

To each prime p of good reduction for A, one can attach a conjugacy

class xp ∈ X = Conj(ST(A)) s.t. Char(xp) = Char
(
%A,`(Frobp)√

Np

)
.

Sato–Tate conjecture for abelian varieties

The sequence {xp}p is equidistributed on X w.r.t the push forward of the
Haar measure of ST(A).
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Fité, Kedlaya, Sutherland 6 / 22



Sato–Tate axioms for g ≤ 3
The Sato–Tate axioms for a closed subgroup G ⊆ USp(2g) for g ≤ 3 are:

Hodge condition (ST1)

There is a homomorphism θ : U(1)→ G 0 such that θ(u) has eigenvalues u
and u each with multiplicity g . The image of such a θ is called a Hodge
circle. Moreover, the Hodge circles generate a dense subgroup of G 0.

Rationality condition (ST2)

For every connected component H ⊆ G and for every irreducible character
χ : GL2g (C)→ C: ∫

H
χ(h)µHaar ∈ Z ,

where µHaar is normalized so that µHaar(G
0) = 1.

Lefschetz condition (ST3)

G 0 = {γ ∈ USp(2g)|γαγ−1 = α for all α ∈ EndG0(C2g )} .
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General remarks and dimension g = 1

Proposition

If G = ST(A) for some A/k with g ≤ 3, then G satisfies the ST axioms.

Mumford–Tate conjecture  (ST1)
“Rationality” of G`  (ST2)

Bicommutant property of G0
`  (ST3)

Axioms (ST1), (ST2) are expected for general g . But not (ST3)!

Remark

Up to conjugacy, 3 subgroups of USp(2) satisfy the ST axioms.

All 3 occur as ST groups of elliptic curves defined over number fields.

Only 2 of them occur as ST groups of elliptic curves defined over
totally real fields.
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Sato–Tate groups for g = 2

Theorem (F.-Kedlaya-Rotger-Sutherland; 2012)

Up to conjugacy, 55 subgroups of USp(4) satisfy the ST axioms.

52 of them occur as ST groups of abelian surfaces over number fields.

35 of them occur as ST groups of abelian surfaces over totally real
number fields.

34 of them occur as ST groups of abelian surfaces over Q.

Above can replace “abelian surfaces” with “Jacobians of genus 2 curves”.

Corollary

The degree of the endomorphism field of an abelian surface over a number
field divides 48.

Theorem (F.-Guitart; 2016)

There exists a number field (of degree 64) over which all 52 ST groups
can be realized.
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Sato–Tate conjecture for g = 2

Theorem (Johansson, N. Taylor; 2014-19)

For g = 2 and k totally real, the ST conjecture holds for 33 of the 35
possible ST groups.

The missing cases are USp(4) and N(SU(2)× SU(2)).

The case N(SU(2)× SU(2)) corresponds to an abelian surface A/k ,
which is either:

I ResLk(E ), where L/k quadratic and E/L an e.c. which is not a k-curve;
or

I absolutely simple with real multiplication not defined over k.

If k = Q, the ST conjecture holds for N(SU(2)× SU(2)) (N. Taylor).
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Sato–Tate groups for g = 3

Theorem(F.-Kedlaya-Sutherland; 2019)

Up to conjugacy, 433 subgroups of USp(6) satisfy the ST axioms.

Only 410 of them occur as Sato–Tate groups of abelian threefolds
over number fields.

Corollary

The degree of the endomorphism field [F : Q] of an abelian threefold over
a number field divides 192, 336, or 432.

This refines a previous result of Guralnick and Kedlaya, which asserts

[F : Q] | 26 · 33 · 7 = Lcm(192, 336, 432) .
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Classification: identity components
(ST1) and (ST3) allow 14 possibilities for G 0 ⊆ USp(6):

USp(6)

U(3)

SU(2)× USp(4)

U(1)× USp(4)

U(1)× SU(2)× SU(2)

SU(2)× U(1)× U(1)

SU(2)× SU(2)2

SU(2)× U(1)2

U(1)× SU(2)2

U(1)× U(1)2

SU(2)× SU(2)× SU(2)

U(1)× U(1)× U(1)

SU(2)3

U(1)3

Notations:

For d ∈ {2, 3} and H ∈ {SU(2),U(1)}:

Hd = {diag(u, d. . ., u) |u ∈ H }

For d ∈ {1, 3}:

U(d) =

(
U(d)St 0

0 U(d)
St

)
⊆ USp(2d)

Note in particular that

SU(2)× U(1)2 ' U(1)× SU(2)2 .
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Classification: From Lie groups to finite groups
General strategy to recover the possibilities for G from G 0:

Compute N = NUSp(6)(G 0) and N /G 0 .

Use{
G ⊆ USp(6) with G0 = G 0

satisfying (ST2)

}
/∼ ←→

{
finite H ⊆ N/G 0 s.t.
HG 0 satisfies (ST2)

}
/∼

Consider 3 cases depending on G 0:
I Genuine of dimension 3: G 0 ⊆ USp(6) cannot be written as

G 0 = G 0,1 × G 0,2 with G 0,1 ⊆ SU(2) and G 0,2 ⊆ USp(4) . (∗)

I Split case: G 0 can be written as in (*) and

N ' N1 × N2 , where Ni = NUSp(2i)(G
0,i ) .

I Non-split case: G 0 can be written as in (*) and

N1 × N2 ( N .
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Classification: cases depending on G 0

Genuine dim. 3 cases

{
USp(6)

U(3)

Split cases



SU(2)× USp(4)

U(1)× USp(4)

U(1)× SU(2)× SU(2)

SU(2)× U(1)× U(1)

SU(2)× SU(2)2

SU(2)× U(1)2

U(1)× SU(2)2

U(1)× U(1)2

Non-split cases


SU(2)× SU(2)× SU(2)

U(1)× U(1)× U(1)

SU(2)3

U(1)3
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Classification: From G 0 to G

Genuine cases: USp(6), U(3), N(U(3)).

Split cases: Since N/G 0 ' N1/G
0,1 × N2/G

0,2 we have

A =

{
H ⊆ N/G 0 finite s.t.
HG 0 satisfies (ST2)

}
/∼ ←→

 H = H1 ×H′ H2 with
Hi ⊆ Ni/G

0,i finite s.t.
HiG

0,i satisfies (ST2)

 /∼

The set on the right can be recovered from the ST group
classifications in dimensions 1 and 2. This accounts for 211 groups.

Non-split cases:

G 0 N/G 0 #A
SU(2)× SU(2)× SU(2) S3 4
U(1)× U(1)× U(1) (C2 × C2 × C2) o S3 33
SU(2)3 SO(3) 11
U(1)3 PSU(3) o C2 171

Fité, Kedlaya, Sutherland 15 / 22



Classification: From G 0 to G

Genuine cases: USp(6), U(3), N(U(3)).

Split cases: Since N/G 0 ' N1/G
0,1 × N2/G

0,2 we have

A =

{
H ⊆ N/G 0 finite s.t.
HG 0 satisfies (ST2)

}
/∼ ←→

 H = H1 ×H′ H2 with
Hi ⊆ Ni/G

0,i finite s.t.
HiG

0,i satisfies (ST2)

 /∼

The set on the right can be recovered from the ST group
classifications in dimensions 1 and 2. This accounts for 211 groups.

Non-split cases:

G 0 N/G 0 #A
SU(2)× SU(2)× SU(2) S3 4
U(1)× U(1)× U(1) (C2 × C2 × C2) o S3 33
SU(2)3 SO(3) 11
U(1)3 PSU(3) o C2 171
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G 0 = U(1)3: map of the proof

A =

{
finite H ⊆ PSU(3) o C2

s.t. H U(1)3 satisfies (ST2)

}
/∼

l{
finite µ3 ⊆ H ⊆ SU(3)

s.t. H U(1)3 satisfies (ST2)

}
/∼

⋃ {
C2-extensions of groups

in the set on the left

}
/∼

↪→{
finite µ3 ⊆ H ⊆ SU(3) s.t.

H U(1)3 sat. (ST2) for Tr(∧2C6)

}
/∼

||{
finite µ3 ⊆ H ⊆ SU(3) s.t.
|Tr(h)|2 ∈ Z for all h ∈ H

}
/∼

The above injection is seen to be a bijection a posteriori.

This yields 171 = 63 + 108 groups.
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G 0 = U(1)3: Ingredients of the proof

The finite µ3 ⊆ H ⊆ SU(3) were classified by Blichfeldt, Miller, and
Dickson (1916). They are:

I Abelian groups
I C2-extensions of abelian groups.
I C3-extenions of abelian groups.
I S3-extensions of abelian groups.
I cyclic extensions of exceptional subgroups of SU(2) (2T , 2O, 2I ).
I Exceptional subgroups of SU(3)

(projected in PSU(3) are E36 ,E72 ,E216 ,A5, A6, E168 ' PSL(2, 7)).

Determining the possible orders of h ∈ H reduces to solving “a
multiplicative Manin-Mumford problem”:

I If z1, z2, z3 ∈ µ∞ are the eigenvalues of h, then:

|z1 + z2 + z3|2 = |Tr(h)|2 ∈ Z and z1z2z3 = 1 .

I Even more, it must happen |zn1 + zn2 + zn3 |2 ∈ Z for all n ≥ 1.
I One deduces that ord(h)|21, 24, 36.

Assemble elements to build groups of the shape described by the
BMD classification.
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I cyclic extensions of exceptional subgroups of SU(2) (2T , 2O, 2I ).
I Exceptional subgroups of SU(3)

(projected in PSU(3) are E36 ,E72 ,E216 ,A5, A6, E168 ' PSL(2, 7)).

Determining the possible orders of h ∈ H reduces to solving “a
multiplicative Manin-Mumford problem”:

I If z1, z2, z3 ∈ µ∞ are the eigenvalues of h, then:

|z1 + z2 + z3|2 = |Tr(h)|2 ∈ Z and z1z2z3 = 1 .

I Even more, it must happen |zn1 + zn2 + zn3 |2 ∈ Z for all n ≥ 1.
I One deduces that ord(h)|21, 24, 36.

Assemble elements to build groups of the shape described by the
BMD classification.
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Classification: Invariants

Only 210 distinct pairs (G 0,G/G 0).

Define the (i , j , k)-th moment, for i , j , k ≥ 0, as

Mi ,j ,k(G ) := dimC
(
(∧1C6)⊗i ⊗ (∧2C6)⊗j ⊗ (∧3C6)⊗k

)G ∈ Z≥0 .

The tuple {Mi ,j ,k(G )}i+j+k≤6 attains 432 values. It only conflates a
pair of groups G1,G2, for which however

G1/G
0
1 ' 〈54, 5〉 6' 〈54, 8〉 ' G2/G

0
2 .

In fact, Mi ,j ,k(G1) = Mi ,j ,k(G2) for all i , j , k !

In total, the 433 groups have 10988 connected components
(4 for g = 1 and 414 for g = 2).

There are 30 maximal groups.

Any possible order of G/G 0 divides 192, 336, or 432.
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Realization

By Shimura, if A/k has CM by M, then F = M∗k . This rules out:
I 20 groups in the case U(1)× U(1)× U(1).
I 3 groups in the case SU(2)× U(1)× U(1).

This leaves 410 groups, 33 of which are maximal.

It suffices to realize the maximal groups.

The iso ST(A)/ ST(A)0 ' Gal(F/k) is compatible with base change.
Given F/k ′/k:

ST(A)0 // ST(A) // Gal(F/k)

ST(Ak ′)0 // ST(Ak ′)
?�

OO

// Gal(F/k ′)
?�

OO
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Realization of the maximal groups

Genuine cases (2 max. groups):
I USp(6): generic case. Eg.: y2 = x7 − x + 1/Q.
I N(U(3)): Picard curves. Eg.: y3 = x4 + x + 1/Q.

Split cases (13 max. groups):
Maximality ensures the triviality of the fiber product, i.e.

G ' G1 × G2 ,

where G1 and G2 are realizable in dimensions 1 and 2.

Non-split cases (18 max. groups):
I G 0 = SU(2)× SU(2)× SU(2) (1. max. group): ResLQ(E ), where L/Q a

non-normal cubic and E/L e.c. which is not a Q-curve.
I G 0 = U(1)× U(1)× U(1) (3 max. groups):

Products of CM abelian varieties.
I G 0 = SU(2)3 (2 max. groups):

Twists of curves with many automorphisms.
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Realization of the maximal groups

G 0 = U(1)3 (12 max. groups):
I All such G satisfy

G/G 0 ↪→ GL3(OM) o Gal(M/Q)

where M is a quadratic imaginary field of class number 1.
I Reinterpret

G/G 0 ↪→ Aut(E 3
M) o Gal(M/Q)

where E/Q is an elliptic curve with CM by OM .
I This gives a 1-cocycle

ξ̃ ∈ H1(G/G 0,Aut(E 3)) .

I There exists L/Q such that G/G 0 ' Gal(L/Q).
I Then setting

ξ : Gal(L/Q) ' G/G 0 ξ̃→ Aut(E 3)

and A = (E 3)ξ one finds ST(A) ' G .
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Open questions

Realizability over totally real fields?

Realizability over Q?

Existence of a number field over which all 410 groups can be realized?

Realizability via principally polarized abelian thereefolds?

Realizability via Jacobians of genus 3 curves?
I Partial answer: At least 22 of the 33 maximal groups can be realized

via Jacobians...

G/G 0 #(G/G 0) C with ST(Jac(C ))
(C4 × C4) o S3 × C2 192 Twist of the Fermat quartic
PSL(2, 7)× C2 336 Twist of the Klein quartic
(C6 × C6) o S3 × C2 432 ?
E216 × C2 432 ?

Fité, Kedlaya, Sutherland 22 / 22


